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By the method of Fourier integral transforms we construct the exact solution of 
the problem of equilibrium of a nonhomogeneo~ half-plane z >, 0 under the 
action of normal and tangential forces applied to the boundary. The shear mo- 
dulus of the half-plane is a power function of a linear binomial in the Cartesian 
coordinate z while Poisson ratio is constant. 

In the papers [l - 41, devoted to similar problems, the equilibrium of a half- 
plane and a half-space z > 0 with modulus of elasticity h’ (3) = E& , was in- 
vestigated. It is obvious that such media are physically not real, since the mo- 
dulus of elasticity is equal to zero on the surface. This circumstance, in parti- 
cular, implies a restriction on the possible values of the exponent k. Thus, for 

example, the formulation of the problem on the action of a distributed load has 
sense only for 0 -2; k < 1, which in turn, restricts considerably the sphere of ap- 
plicability of the power law adapted by the authors as an interpolation formula 
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which models the foundation. Therefore, it is of interest to investigate the equi- 
librium of a nonhomogeneous half-plane, whose modulus of elasticity varies with 
depth according to a power relation and it is different from zero on the surface. 

In [5] we have considered a similar problem for the half-space, but some restric- 
tions were imposed on the Poisson’s ratio. 

1. We determine the state of stress and strain of a nonhomogeneous half-plane z 2 
0 under the action of forces applied to the boundary z = 0. The shear modulus of the 
half-plane varies according to the rule 

G (z) = G, (1 + c@ 

and the Poisson’s ratio v is constant. 

0.1) 

The general solution of the plane problem of the theory of elasticity for the nonhomo- 
geneous isotropic media, whose elastic characterisitics are differentiable functions of the 
Cartesian coordinate Z, is of the form [S] 

(1.2) 

Here ax, % %, fh, %, are the components of the displa~ment vector and of the 

stress tensor, Y* = Y for the case of plane strain, taking place in a plane parallel to 
XUZ, and V* = v I (1 + v) for the case of the generalized plane state of stress, L 
is a function satisfying the equation 

Akg 1 A+g$(+j=O (A=s+g) (1.3) 

Thus, the problem reduces to finding in the domain z > 0 such a solution of Eq.(l. 3) 
which is bounded at infinity and which satisfies the following conditions at the boundary 

z = 0 of the half-plane: 
5, /z=o = o (a$, r,, fz=o = r (z> (1.4) 

where o (3~) and z (z) are the normal and tangential forces applied to the half-plane. 
We assume that the functions (T(X) and r(x) can be represented by Fourier integ- 
rals 

o (z) = ij’ gi (a) e-iax da, z (z) = :cm g2 (a) e-iax da (1.5) 
-P --m 

where 

g1 (a) = & 
+pD 

s 

f,? 
o (z) &a” dx, g2 (4 - &- \ a (x) eiax dx 

--m -m 

We seek the solution of Eq. (1.3) in the form 

+a” 
L= s e-iarg (2, a) -$- G.6) 

Here II, (z, a) is a function, bound~~for z -+ co and which is subject to determination. 
Substituting the expressions (1.6) and (1.1) into Eq. (1.3) and the equalities (1.4), we 
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find that the function 9 (z, CC) is the sulution of the equation 

with the following boundary conditions : 

-+ Ir=cl = g1 (a), 2 /_ = if%2 (4 

(1.7) 

(1.8) 

Thus, the plane problem of the theory of elasticity has been reduced to a boundary 
value problem for the ordinary differential equation (1.7). The latter, by the substitu- 
tion 77 = (1 + cz) a / c reduces to the type investigated in [3, 61. The solution, 
bounded for z + 00, has the form : 

for Y* # 1 / (b + 1) and b # -1 

II, (2, a) = zJ+ [C,WX,, (2rl) + &W-x+ &-I)] 

for Y* = 1 / (b + 1) or b = --2 

(1.9) 

Here C,, C, are unknown functions of the parameter a, which have to be determined 

from the boundary conditions, I, (q), K, (q) are Bessel functions of imaginary argu- 

ments of the first and second kind and of order p,, Wkx,P (2 q) are the Whittaker func- 

tions 
p=l+b/Z, zl=l+cz, x-=l/,l/(b+l)[l--*b/(l-v*)J 

kt us assume for definiteness, that v* # 1 / (b + 1) and b # -1. Proceeding 
from the expressions (1.9) and (1.6). we take the function I# (z, a) in the form 

lli (z, a) = Zl i*-"p [C,Wx, I* (Zkz,) + c,w_x, p (ZhZl)] (k = +) (1.11) 

For simplicity, we shall omit in the following the arguments 2kZr of the Whittaker 

function. Substituting I# (z, a) into the conditions (1.8). we obtain a system of alge- 
braic equations for the functions C, and C,, from which we find 

C, = *[(A + p + x - +J w-x, P (23L) - w_x+,, 1” (ZA)] - (1.12) 

C2=-A!$L [(A + p - x - -+) wx. t* (2h) - wx+,* r (24 + 
2 g2 (4 wx, r (W 

& = Wx, ,I. (2h) [2xW-x,~ (2h) - W-x+,, t* (2h)l + 

w-x, i* (2V wx+,, I* (2V 

Substituting the expression (1.11) into (1.6). we obtain the function L, from where, 
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making use of the relations (1.2), we find the components of the displacement vector 
and the stress tensor iz-&‘J’ +m . 

u,=- + 1 ~{c,[(w+f~-wx,P - (1.13) 
0 

-00 

2(1--*)(Y-~)~vx+l,l;l+ 
c2 (h2Z12 + fl’) Kx, p - 2 (1 

[ 
-v*,(&) w-x+l.r]}da 

c2;k‘-‘/’ +,” 

4 = 2Go s Grcl @2Z12 + f2-3 wx,IL - 

-03 

(hz1C X(4 - y*)x) w x+1,t*] + c, [(h2Z12 + f2') IY-% i* - 

(hz1- 2(1 --v*)x) W-x+l,PII~~ 

Q, = _ zy~,+" ebiax 
s T{Cl[(h2z;. +j+b- 

2 (p-g-ii x+1, p 1 a + c, h2Z12 + & i w-x. P - 

2(4pV-x+4}~~ 

+,=Q 
I*-!‘# 

6, = 51 s e+x [CICVx, jl. + C2W_x, p] da 
--m 

Here we have introduced the following notation: 

jr’ = 2 (1 - @) (p .x!z x - ‘12) (p - l/2 + w 

fz’ = [(I + 2v*c) (p + x - 1/2) i 2x - 11 hz, T 2 (1 - Y*) x (p zk x -I!*) 

where the signs in the left-hand and the right-hand sides correspond_ 

2. The asymptotic expansions of the Whittaker functions have the form [i’] 

cv,, I* (2hq) - (2hz3 e-“‘1 {I + pzy&-;,l’.J)* i- (2.1) 

II‘? - (x -- vpt& (x - 8/4zl _t_ . . *} 

w_,, p (2hz,) - (2hqy CT)“‘! 1 + pz -&y + 

[bL.Ld - (x ..c ‘/.#y [p. -- (y, + yJ)“j 

‘! (“hZ$J 
+. . . 

I 

In some particular cases of nonhomogeneity of the elastic medium, the series termi- 

nate and formulas (2. I) become exact. In addition, the expressions (1.13) for the deter- 
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mination of the displacements and stresses can be significantly simplified. 
such cases by setting 

112 - x- 
() 

= 7 

Let us find 

(2.2) 

i.e. the first series terminates at the term with index n, while the second one at the 

term with index m. Hence, taking into account that 0 < Y < ‘/a and x > 0 (for 

x = 0 either Y* = 1 / (b + I), or b = -1, and the function ‘II, (z, a) has to be 
taken in the form (1.10) ) , we find 

(2.3) 

and for m and n we obtain a system of inequalities 

n>m, n\(m+1/2[l+ IBM--71, ma2 (2.4) 

In addition, there exists one more solution of Eqs. (2.2) for the homogeneous medium 

m = 1, n = 2, b = 0, 0 Q v < ‘jz (2.5) 

Since the constants G,, and C, which characterize the elastic properties of the half- 

plane,do not depend on m and n there are no restrictions imposed on their magnitude. 
Below, for all possible 0 < b < 10 we give the corresponding values of the generali- 

zed Posson’s ratio V*, calculated. with the formula (2.3) 

1; 0 3 116 4 l/l6 5 l/cl 6 l/16 7 0 8 l/10 8 l/l6 9 'Isa 10 '112 10 

Thus, for particular cases of nonhomogeneity of the elastic medium, defined by the 
relations (2.3) and (2.4), the Whittaker functions can be expressed in terms of exponen- 
tial and power functions. Moreover, the integrands in the formulas (1.13) become sim- 

pler so that they can be integrated into special functions for many forms of the loads 

cr (z)and T (x). 
We consider, for example, the case b = 2. Then V* = 1/4. Making use of the for- 

mulas (2,1),(1.12) and (1.13). we obtain the components of the displacement vector 

1 +p” 
Kc= -&(I f QG” s -%(a)[(2h + l)i - I] - (2.6) 

---co 

g, (4 12hY + 3h (5 - 1) - 61} da 

1 +P” e-iax e-‘.< 

uz = - 2c (1 + 5) G” s 2h2 + 6h + 3 g1 (a) [2h25 + h (5. + 3) + 21 + 
--m 

++(41(2h + 315 + 11pu (5 = cz) 

For definiteness, we assume that concentrated loads are applied to the boundary of the 
half-plane. In further analysis it is convenient to consider separately the action of nor- 

mal and tangential forces. 

3. Assume that a concentrated force P is applied at the origin, normal to the half- 
plane and acting in the direction of the z-axis. Then 
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0 (x) = -P6 (x), T(X) = 0 (3.1) 

where 6 (z) is the Dicac delta function. Substituting the expressions (3.1) into (1.5), 

we obtain 
g, (a) = - P / (24, g, (4 = 0 (3.2) 

Now, formulas (2.6) obtain the form 

(3.3) 

We expand the rational functions in the integrands into simple fractions. Making me of 
the formulas [8] m 

l e-hP 

s 
wdh= -e@Ei(-_kp) (IargkI<n, Rep>O) (3.4) 

0 

02 cc 

s 

6 
' sinLEe-hLdh=&, 1 coshEe-h’:dh=- 4s + P” 

where Ei (- ki) 
0 

is the exponential integral function, we obtain 

P 
uz= ac(l+LgG, { 

-c.- + &[15s - 9 + (95 - 5) Jml x p+p (3.5) 

El (TlE, r15) + & [ 155 - 9 - (95 - 5) v-1 & (rzE, YZS,} 
P 

‘, = 2n(l+QG0 { 
-JL. + f [55 + 14 (35 + 1) 0-l x 52+52 

&(YIE, r15) + + [55 + 1 - (35 + 1) m-1 E2 (Y&7 r&j 
Here 

El (5,~) = G [e” Ei (-U) + e; Ei (- 41 (3.6) 

Ea (E, 5) = G [e” Ei (- u)- ez Ei (- a)1 

u=c+i& U=t- iE;, y1 = ‘12 (3 + 1/S), yz = l/2 (3 -I/S) 

We note that also for the other two particular cases of nonhomogeneity of the elastic 

medium, defined by the relations (2.3), the components of the displacement vector and 
stress tensor can be expressed in terms of the functions E, (5, 5) and Ea (E, 5). 

We introduce the polar system of coordinates 

p = JQ” + C29 cp = arctg x I z 

If we make use now of the representation of the exponential integral function in the 

form of series, then from the expressions (3.6) we obtain (y = 1.781072418 is Euler’s 
constant) 

El (L 5) = et pn?‘p cosE - cpsin E + 5 (-p)” c”“f~k~ “‘I 
m k==l (3.7) 

6, (E, 5) = - efln rp 
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From the asymptotic expansion of the exponential integral function we obtain the asym- 
ptotic expansions for El (E, <) and E, (E, 5) at large p 

El (E, 5) _ -F + ‘lo;; 2q I 21,;; 3v + ... 

sin rp E&j)_---+ iIs$2q - 21a;3q +..* 

If we make use of the formula [S] 

(3.3) 

Ei (& iE) = ei (8) & i si (E) 

where si(!$, ci($) are the integral sine and cosine f~~lons, then for 5 = 0 or E = (.I 

the functions E, (E, 5) and E, (E, 5) can be expressed in terms of the tabulated 
functions 

E,(O, P) = er Ei (--- 0, Es (0, 5) = 0 

From the formulas (3.5) and (3.7) it follows that for p < 1 

Thus, near the point of application of the force, the displacements of the nonbomoge- 
neous half-plane coincide, except for a constant, with the displacements of an identical- 

ly loaded homogeneous half-plane having 
the same Poisson’s ratio and with shear 

modulus equal to G,,. 
As we move off the point of application 

of the force, the displacements decay fast. 

The character of the damping can be easily 
determined if we make use of the asymp- 

totic expansions of the functions E, (g, 5) 
and Es (g, 5)‘ Thus, for example, the dis- 
placements II, at the boundary of the half- 

plane decrease for large g with a rate 
which is proportional to kz. 

setting in the formulas (3.5) c --+ 0, , 
we find that the displacements uz increase 
indefinitely. However, if we fix one of the 
points of the half-plane, as this is done in 

Fig. 1 solving of the corresponding problem for 

the homogeneous medium, we arrive at the 

well-known Flamant formulas. 
The displacements of the boundary z = 0 of the half-plane, according to (3.9) and 

(3.5). are expressed in terms of tabulated functions and have the form 
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In Fig, 1 we have represented the vertica1 displacements of the boundary of the haff- 

plane for different values of the coefficient C. On the vertical axis we have represented 

the quantity w = u,Gsfp. 

4. t,et us assume now that the concentrated force P, applied at the origin to the 
half-plane z > 0, acts in the positive direction of the x,-axis, tangent to the boundary. 

Then 0 (x) = 0, 7 (x) = - P6 (x) (4.X) 

Substituting the expressions (4.1) into (1.5). we obtain 

g,(a) = 0, g, (a) = - P / (Zn). (4*2) 

Now, formulas {Z. 6) can be transformed into 

cos hEe-I.5 - 
.,2h”r,+3h(C--1)--ddh 

“h’+6h+3 (4.3) 

0 

We expand the rational functions in the integrands into simple fractions and we make 

use of the formulas (3.4). As a result we obtain 

i i-t1315-:-1)-L(i-1)d?] x (4.4) 

L ~______ 
1 

u u. 5 22 

Fig. 2 

7-5; = 
P 

%n (1 + C) G,, 1 E6+ 
4” -+ 5’ 

$ [35 - 1 -I- (5 - 1) I/3-1 x 

E, (r&i, r&l + + 135 - I- 

(5 - 1) v% & (r&, I‘d) 

The displacements of the boundary of the 
half-plane z = 0 can be expressed in terms 

of tabulated functions and have the form 

ux I:, = - & [r&,(r1W + 

Tl~l(~&,O)l (4.5) 

uz L, -; - $?& [Cl + V$ Es (r&, 0) -t 

(1 - =j'-c'3, &(r,E, WJ 
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From the expressions (4.4) and (3.7) it follows that near the point of application of the 
force (p < 1) the displacements of the nonhomogeneous half-plane coincide, except 
for the constant, with the displacements of an identically loaded homogeneous half- 
plane, having the same Poisson’s ratio and with shear modulus equal to G,.. However, as 

we move off the point of application of the force, the displacements start to decay fast. 
The character of the damping can be easily determined if we make use of the asymp- 
totic expansions (3.8). Thus, for example, from the expressions (4.4) and (3.8) it follows 
that for p >> 1 we have 

n.X I;=0 = r.,&..: (4.6) 

In Fig. 2 we have represented the displacements u, of the points of the surface of the 

half-plane for different values of the coefficient C. On the vertical axis we have repre- 

sented the quantity u = u,G,, / P. 
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